f1(X) -> if3(X, c, n__f1(true))
if3(true, X, Y) -> X
if3(false, X, Y) -> activate1(Y)
f1(X) -> n__f1(X)
activate1(n__f1(X)) -> f1(X)
activate1(X) -> X
↳ QTRS
↳ DependencyPairsProof
f1(X) -> if3(X, c, n__f1(true))
if3(true, X, Y) -> X
if3(false, X, Y) -> activate1(Y)
f1(X) -> n__f1(X)
activate1(n__f1(X)) -> f1(X)
activate1(X) -> X
ACTIVATE1(n__f1(X)) -> F1(X)
IF3(false, X, Y) -> ACTIVATE1(Y)
F1(X) -> IF3(X, c, n__f1(true))
f1(X) -> if3(X, c, n__f1(true))
if3(true, X, Y) -> X
if3(false, X, Y) -> activate1(Y)
f1(X) -> n__f1(X)
activate1(n__f1(X)) -> f1(X)
activate1(X) -> X
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
ACTIVATE1(n__f1(X)) -> F1(X)
IF3(false, X, Y) -> ACTIVATE1(Y)
F1(X) -> IF3(X, c, n__f1(true))
f1(X) -> if3(X, c, n__f1(true))
if3(true, X, Y) -> X
if3(false, X, Y) -> activate1(Y)
f1(X) -> n__f1(X)
activate1(n__f1(X)) -> f1(X)
activate1(X) -> X
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
F1(X) -> IF3(X, c, n__f1(true))
Used ordering: Polynomial Order [17,21] with Interpretation:
ACTIVATE1(n__f1(X)) -> F1(X)
IF3(false, X, Y) -> ACTIVATE1(Y)
POL( true ) = max{0, -1}
POL( false ) = 1
POL( ACTIVATE1(x1) ) = x1
POL( IF3(x1, ..., x3) ) = max{0, x1 + x3 - 1}
POL( c ) = max{0, -1}
POL( n__f1(x1) ) = x1 + 1
POL( F1(x1) ) = x1 + 1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
IF3(false, X, Y) -> ACTIVATE1(Y)
ACTIVATE1(n__f1(X)) -> F1(X)
f1(X) -> if3(X, c, n__f1(true))
if3(true, X, Y) -> X
if3(false, X, Y) -> activate1(Y)
f1(X) -> n__f1(X)
activate1(n__f1(X)) -> f1(X)
activate1(X) -> X